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This paper is concerned with the propagation of small amplitude gravity waves 
over a flow with non-uniform velocity distribution. For such a flow Burns derived 
a relation for the velocity of propagation in terms of the velocity distribution of 
the mean flow. This result is derived here in another way and some of its implica- 
tions are discussed. It is shown that one of these is hardly acceptable physically. 
Burns’s result holds only when a real value of the propagation velocity is assumed; 
the mentioned difficulties vanish if complex values are allowed for, implying 
damping or growth of the waves. Viscous effects which are the cause of damping 
or growth are important in the wall layer near the bottom and also at  the critical 
depth, which is present when the wave speed is between zero and the fluid velocity 
at  the free surface. 

In  5 2 the basic equations for the present problem are given. In  3 3 exchange 
of momentum and energy between wave and primary flow is discussed. This is 
analogous to what happens at  the critical height in a wind flow over wind-driven 
gravity waves. In  9 4 the viscous effects at the bottom are included in the analysis 
and the complex equation for the propagation velocity is derived. Finally in 3 5 
illustrations of the theory are given for long waves over running flow and for the 
flow along a ship advancing in a wavy sea. In  these examples a negative curvature 
of the mean velocity profile is shown to have a stabilizing effect. 

1. Introduction 

§ 233) the dispersion relation 
A familiar result from inviscid hydrodynamics is (see for example, Lamb 1932, 

c2 = i tanhkh (1.1) 

for gravity waves of small amplitude travelling on the free surface of an otherwise 
undisturbed fluid of depth h. In  (1.1) c is the phase velocity of the wave and k 
the wave-number, while g is the acceleration due to gravity. When the fluid 
moves with uniform velocity U, the same relation holds in a frame of reference 
in which the undisturbed fluid is at  rest, whence the wave speed c follows from 

(U, - c)2 = g/k tanh kh. (1.2) 

This paper is concerned with the form of the dispersion equation when the 
velocity distribution is non-uniform between the bottom and the free surface. 
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In  (two-dimensional) wave flow let the bottom be a t  y = 0 and the free surface 
at  y = h,  gravity pointing in negative y direction, the wave travelling in the 
x direction. For long waves, i.e. kh < 1, with which we shall primarily be con- 
cerned, an estimate for the phase velocity can be made as follows. In a frame 
moving with the wave velocity c the motion is steady. Hence along a streamline 
the total head is constant. We denote the mean flow by U(y), the wave-induced 
velocities in the horizontal and vertical directions by u and v, the pressure by p 
and the fluid density by p. The constancy of the total head means that 

p + +p(( U - c + u ) ~  + vz} +pgy = constant (1.3) 
along a streamline. In  the theory of long waves on fluids at rest, vertical accelera- 
tion is neglected which results in a hydrostatic pressure distribution in the 
vertical direction. We make this assumption here also and assume further that 
the wave amplitude is small enough to permit the neglect of squares and products 
of wave-induced velocities. The expression (1.3) reduces to 

( U - c ) u + g y  = 0 ,  (1.4) 

where y(z, t )  is the wave elevation above the mean height h. In  linear conservative 
waves there is equipartition between energies, averaged over a wavelength. In 
this case, assuming a conservative wave, the kinetic energy and the potential 
energy must, averaged over a wavelength A,  be equal. Upon introducing 

y = aeikx (1.5) 
the potential energy in a wavelength is tpga2h. Hence 

where the vertical wave-induced velocity is neglected with respect to the hori- 
zontal one, since we are dealing with long waves. From (1.4) we have 

ga exp ikx 
u-c . 

% = -  

Inserting this in (1.6) yields 

This relation has been previously obtained by Burns (1953) in a quite different 
way, to be discussed in the following sections. For constant U ,  U,say, (1.7)reduces 
to the long wave approximation of (1.2). For a general distribution of U also 
two values of c are found from (1.7). Consider a profile varying monotonically 
from U,t at the bottom to uh at the free surface. A striking result from (1.7), 
discussed by Burns, is that c is either larger than uh or smaller than U,, because 
otherwise U would equal c somewhere, which makes the integral divergent. 
For U, = 0 this means that also for U, > (gh)* there is the possibility of up- 
stream propagation. This is hardly acceptable physically. Consider, for instance, 
a distribution as sketched in figure 1. For high Froude number Fr, defined by 

c = Uilsh, (1.8) 
t In a non-viscous approximation U may be non-zero. 
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the two possible values of c are with uniform flow, U = U,, somewhat larger or 
less respectively than U,. 

According to (1.7) the introduction of shear over a very small part of the flow 
as in figure 1, would drastically change this because one of the values of c is nega- 
tive. Burns, in discussing the consequences of (1.7) raised some doubts on this 
conclusion and suggested that viscous effects have to be taken into account. 

/ / /  / / / /  

FIGURE 1. Waves over flow sheared near the bottom, P ,  $ 1. With uniform flow U = u,,, 
the possible velocities of propagation are c1 and c,. In the sheared flow one of the velo- 
cities points upstream according to (1.7). 

Here we examine this problem further. We notice that Burns7s conclusion 
ceases to be valid when complex values of c are admitted, 

c = cr+ zci. (1.9) 

This implies damping or growth of the waves, which may be caused by viscous 
effects. These are of importance in the region near the bottom, where U = 0, but 
also in the region where U equals c,., if such a region is present. The governing 
equations with pertinent boundary conditions are derived in $ 2 .  As will be shown 
in 8 3, the divergence of the integral in (1.7) is closely related to the well known 
singularity of the inviscid Orr-Sommerfeld (or Rayleigh) equation. In  the next 
sections the corrections due to viscous effects are discussed. 

2. Governing equations 
The wave-induced velocities u and v satisfy the condition of mass conservation 

when we introduce the stream function Y defined by 

The linearized Navier-Stokes equations are, taking into account that the primary 
flow also s;atisfies the Navier-Stokes equations, 
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We consider waves travelling in the x direction with velocity c and therefore put 

(2.4) = $ ( y )  eik(z-ct) ,  

Introduction of (2.1) and (2.4) in (2.2) and (2.3) results in the well known Orr- 
Sommerfeld equation 

(2.5) 
iv 
rE ( u - c) $I1 - (k2( u - c) + U") $ = - -- (p - 2k2$" + k4#), 

where primes denote differentiation with respect to y. 
The velocity profile U ( y )  used here is laminar because from the primary flow 

only the mean value is taken into account and not the fluctuations, present when 
the flow is turbulent. Strictly speaking, results of the present theory apply to 
laminar flow only. 

Application to turbulent flow, under the assumption that the distribution 
of mean flow is the most important for the effects under investigation, is question- 
able to the same extent as the use of a 'pseudo laminar' flow by Miles (1957) in 
his theory of wave generation by a turbulent wind flow. The conditions to be 
satisfied by $ are partly bottom conditions, partly free surface conditions. At 
the bottom u and v must vanish, or from (2.1) and (2.4) 

y = o ,  $ = O ,  

y = 0, $ I  = 0. 

Equation (2 .5 )  is the fundamental equation in the theory of stability of laminar 
flow, where flow between solid boundaries is usually considered. Then on all 
boundaries $ = $' = 0. Here we have as complementary conditions those at  the 
free surface. The kinematical condition is, in linearized form, 

Using (1.5), (2.1) and (2.4) this becomes 

y = h: (U,-c)a = .-$. (2.8) 

The other condition is on the pressure. At the free surface, y = J L + r ] ,  this can 
be written as 

Because at  the free surface p = 0 and because v is of the first order in the wave 
amplitude a, we find, inserting ap/ay from (2.3), that up till the second order in 
the wave amplitude p = p g y  at y = h. 

Note that (2.9) does not involve, as Burns (1953) states, the long wave approxima- 
tion of a hydrostatic pressure distribution throughout the fluid. For fluids of 
small viscosity the viscous terms in (2.2) and (2.3) may be neglected at the free 
surface, where they are of higher order in an appropriately defined reciprocal 
Reynolds number then at  the bottom. With the neglect of the viscous terms, 
substitution of (2.9) into (2.2) gives, using again (1.5), (2.1) and (2.4) 

(2.9) 

y = h: (Uh-c)$'-$U' = -ga. (2.10) 
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Equation (2.5), together with the boundary conditions (2.6)-(2.8) and (2.10), 
determine the problem mathematically. 

Viscous effects will be important near solid boundaries. Far from these the 
viscous terms in (2.5) may be neglected. The Orr-Sommerfeld equation then 
reduces to 

sometimes called the Rayleigh equation. 
In the limit of vanishing ci this equation has a singularity where U = c,. The 

implications of this critical layer for the present problem are discussed in the 
next section. 

(U-c)$”-{(k2(U-c)+ U}# = 0, (2.11) 

3. Critical layer 
From the theory of hydrodynamic stability and in particular from the work 

by Miles (1957) and Benjamin (1959) on wave generation by wind, we know how 
to deal with the critical layer where U = c,. For long waves, kh < 1, the Rayleigh 
equation (2.11) has the solution, satisfying (2.8) and (2.10) 

In  the limit of vanishing imaginary part of c, ci + 0, this solution is valid only 
for y 2 yc, yc being given by U(y,) = c,. 

From the aforementioned work we know that for y < yc, but far from solid 
boundaries, the proper way to  cope with the singularity of the integrand in (3.1) 
is to encircle it in the integration with a path below the singularity, which yields 

The stroke through the integral in (3.2) means that the principal value is meant. 
This cannot be obtained from the integral as it stands. For numerical calcula- 
tions the integral has, by partial integration, to be transformed into a more 
suitable form (see appendix). 

Burns, apart from neglecting the viscous effects at  y = 0, imposed the ‘inviscid ’ 
boundary condition $ = 0 on (3.1), overlooking apparently the fact that this 
solution is, when a critical layer occurs, only valid above this layer and not at  

As is well known, the sign of the imaginary term in (3.2) is indeterminate when 
only the Rayleigh equation is considered. The way in which this sign is prescribed 
by the full equationis treated, e.g. in Lin’s (1955) book on hydrodynamic stability, 
where it is also explained that the effects at  the critical layer give rise to a 
difference in wave-induced Reynolds stress above and below y = yc. Denoting 
averaging over zt wavelength with a bar, this Reynolds stress is, averaged over 
a wavelength, - p z .  The relation for this difference in the Reynolds stress is 
(Lin 1955) for small ci 

y = 0. 

- - nplc u; 
(-Puw)y>y,-(-Puw)?d<?d, = 2 -q I $cl exp (2kCi t ) .  (3.3) 
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This relation is a cornerstone in the theory of wave generation by wind. When y 
is measured from the free surface upwards, it is known there that for large y 
the Reynolds stress vanishes because both u and v vanish for large y. It follows 
that a Reynolds stress exists for y < yc with the sign of - U: for UA > 0. In  the 
present problem such a conclusion cannot be drawn directly because there is 
no region where the Reynolds stress is apriori  known. At the bottom, of course, 
the Reynolds stress is zero but in the wall layer near the bottom a stress can be 
built up. 

The Reynolds stress can be expressed in terms of q5 and its complex conjugated 
4 by (cf. Lin 1955, $8.2) 

At the free surface this yields with help of the free surface conditions (2.8) and 
(2.10) and using (1.9) 

This Reynolds stress at  the surface changes the wave momentum, which is in the 
direction of the positive x axis given by 

in a wavelength. 
The rate of change of wave momentum, in the linear approximation from 

which (3.6) results concentrated between crests and troughs, equals minus the 
Reynolds stress at  the surface (see figure 2 ) ,  or 

( -puv),,h = - dM/dt, (3 .6a)  
- 

confirmed by comparison of (3.5) and (3.6). 

Stress - 
FIGURE 2. Illustration of (3.60) ; a positive Reynolds stress 

tends to decrease a positive wave momentum. 

Whether the momentum decreases or increases depends on the sign of ci, 
which is determined by including the wall layer in our considerations. 

So far we have used the inviscid Om-Sommerfeld equation. Only the sign of 
the imaginary term in (3.2) is based on considerations which include viscous 
effects. It is known that for ci < 0 the thickness of the critical layer does not 
reduce to zero in the limit of zero viscosity. The expression (3.1 ) for c,: < 0 is not 
valid, even for infinite Reynolds number, at y = yc, nor (3.2) right below y = yc. 
The jump of the horizontal velocity q5' across the critical layer is according to 
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(3.1) and (3.2) given by idJ,"ga\UL2, which can, since it follows from (3.1) that 
$c = galUA, also be written as in-U,"/UL$c. 

Although the inviscid solution fails in the critical layer for ci < 0 the difference 
in $' is also given there by the same expression, as follows from numerical calcu- 
lations by Betchov & Criminale (1967, $10).  Since $ itself is continuous we may 
use (3.3) also for ci < 0. The exact behaviour of $ through the critical layer is of 
no importance here. When ci > 0, for which we shall discuss an example in $5, 
the behaviour of q5 is accurately described by (3.1) and (3.2) in the limit of 
small ci. In  order to obtain the dispersion equation for c we proceed to incorporate 
the viscous effects at the bottom in the expression for q5 in order to impose on 
this expression the bottom conditions (2.6) and (2.7). 

4. Viscous effects in wall region 
We follow the classic pattern in this type of problem and construct a solution 

of (2.5) consisting of the inviscid solution discussed in the foregoing section and 
one of the so called viscous solutions. First for convenience we make the variables 
dimensionless by putting 

Y1 = Ylh, (4.1) 
u1 = u/uh. 

We introduce the Reynolds number 

R = Uhh/V, 

and the dimensionless wave-number 

a = kh. (4-4) 

For long waves a is a small quantity. At the wall U" is negligibly small, so that 
a function f* that satisfies 

f *iV-iRa(Ul-cl) f *" = 0, (4.5) 

is an approximate solution for large R of the full Om-Sommerfeld equation, 
from which terms in (4.5) are the dominant ones provided U; and a are small. 
A further simplification is to approximate the velocity profile in the wall region 
by a linear one. This approximation has been discussed by Benjamin (1959) 
who showed that this approximation, good in laminar flow, is a reasonable one 
also for turbulent flow. In the wall layer we write, suppressing the subscripts of 
the dimensionless variables, 

Inserting this in (4.5) gives the 'viscous' equation in the wall layer 

u = y u ; .  (4.6) 

f * i v - iRa(yU~-c ) f*"  = 0. (4.7) 

This equation has four solutions. Two of these, being solutions off *'I = 0, are 
non-viscous and of no interest here. The remaining ones are rapidly varying 
viscous solutions. The pertinent one is the solution which tends to zero for large y .  
We denote this solution by f and consider 
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where B is a constant. The right-hand side of (4.8) is an approximate solution 
for large R of (2.5), valid near the wall y = 0. Because c is complex the existence 
of a value of y such that U(yJ = c, does not introduce a singularity in the inte- 
grand in (4.8). Evaluating the integral assuming a small value of ci gives rise to 
a singularity and then the integral has to be split upintoits principalvalue andthe 
contribution of the singularity. In  $ 3  we have done this to bring about the 
connexion with related results from the theories of hydrodynamic stability and 
wave generation by wind. Without specifying that ci is small the integral in (4.8) 
is convergent as it stands. On (4.8) we impress the boundary conditions for 4 
and 9' given by (2.6) and (2.7). Elimination of B gives the required equation for c 

(4.9) 

The quotient f ' ( O ) / f ( O )  can be expressed in the Tietjens function of argument 

(4.10) 
(aRUA)*c/U;t by 

Here = (aRU;)*, ( 4 . 1 0 ~ )  

and B is the Tietjens function (see for a definition Miles 1960). There is some ad- 
vantage in using, instead of P(z),  

f'(0) - U; 1 
fo--- c P(ac/U;t)' 

F(2) = (1 -F(z))-l.  

Then (4.9) can be written as 

(4.11) 

(4.12) 

Relation (4.12) is the principal result of this investigation. To obtain some further 
insight we assume Ici/c,.l < 1. Then the integral in (4.12) reduces to 

Upon decomposing .% into its real and imaginary parts, 

F = F,+iFi, 

we obtain collecting real and imaginary terms and neglecting terms of order 

(4.13) 

n-Ul Fi (A)  

(4.14) 
T + T  

+ 7 2 { % ( ~ )  - AF:(A) - 11' 
1 1 

ci = 

2f o ( U - c J 3  Uocr 

In  these expressions A = ac,/ UA. Tables of the real part S,(z)  and the imaginary 
part Fi(z) of 9 ( z )  are given by Miles (1960). 
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It would be interesting to discuss the stability of the laminar flow U(y), 
bounded on one side by a rigid wall and on the other side by a free surface, on 
the basis of (4.13) and (4.14). This, however, is beyond the scope of the present 
paper and will be left for future research. Here we restrict ourselves to illustrating 
by some examples the gross features of (4.13) and (4.14). 

x 

FIGURE 3. Gravity wave over velocity distribution, which is uniform with unit velocity, 
except for region of dimensionless thickness S. 

5. Some examples 
(a)  First we consider a flow as in figure 3. The mean flow consists of a uniform 

flow over most of the height and a boundary-layer type of flow over a region 
of extent 6. Therefore Uh is of order h/6 and may be assumed to be large. For 
a particular profile the integral in (4.13) can be integrated numerically (see 
appendix). For an estimate we write 

1 1 y U f d y  
2- 

The second integral is small, the integrand being zero near y = 0 as well as near 
y = 1. Its value is of order 

Inserting this in (4.13) shows that 

This shows that the value of the propagation velocity is mainly determined by 
the velocity at  the free surface. 

The result (5.1) does not lead to the difficulties mentioned in 5 1, and arising 
from Burns’s result (1.7). It follows from (5.1) that there is a value of c, between 
0 and 1 for -F, > 1. In  that case there is a critical depth, contributing to ci. For 
the profile sketched in figure 3, U f f  < 0. The sign of ci depends on the signs of the 
various terms in (4.14). The general case is rather complicated but some simpli- 
fying assumptions are in order here. From (5.1) we have to order (Uh)-l 

C ,  = 1 - F;*. (5 .2)  

For not too large values of .F, (but of course exceeding unity) U - c, is positive 
over most of the flow and 

f1 ay 
0 (U-CJ3 

may be assumed to be positive and of order 1. 
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From Miles’s (1960) discussion on 9 it follows that the expression between 
curly brackets in (4.14) tends to - 1 for A + 0 and to 0 for A -+ co, in between 
never exceeding unit order. Because this expression is preceded by (U;)-l its 
neglect is reasonable for moderate values of FT. 

Then 

The right-hand side summarizes the contributions to ci by the critical layer, 
which is negative here, and by the wall layer. It is interesting to note that the 
effect of the critical layer is, with U: < 0, to stabilize the wave, whereas in the 
wave generation by wind a negative curvature in the wind profile a t  the critical 
height has a destabilizing effect. 

Consider the profile U = 1 - exp ( - yu;). For the profile to be linear in the wall 
layer it is necessary that (aRUA)-), which is the thickness of the wall layer, is 
small with respect to (U;)--l. This implies A % 1. 

Then Fi is negligibly small (Miles 1960). For this profile the integral in (4.12) 
can easily be evaluated and we find? 

The question naturally arises whether this effect is measurable under laboratory 
conditions. In  an experiment one would try to measure decay of the wave 
amplitude in distance, not in time. For small ci this can be inferred from the 
timewise behaviour by replacing t by x/c ,  in the non-periodic part of the elevation. 
The wave elevation is given by = aexp(i(kz-ct)) and accordingly, in an 
experiment in which the waves decay or grow in distance 

Using (5.2) and (5.3) we find for the relative decay per wavelength 

b m a x  7Tz 

Tmax U;(F$ - 1)  * 

For a depth h andd:a boundary-layer thickness 6, Uh is of order h/6. Taking 
h/6 = 0(102), e.g. h N 0.1 m and 6 N 10-3m, it follows that an appreciable change 
in the wave height must occur in, say, 10 wavelengths. 

Over this distance the mean profile will change. Therefore, in trying out the 
theory in an experiment the change of the mean profile must be taken into 
account. 

(b )  As a second example consider a ship advancing in a wavy sea of infinite 
depth with velocity V (figure 4). In  the boundary layer alongside the ship fluid 
is entrained. If we make a cross-section A-A in the boundary layer parallel to 

7 The argument of In ( - c/(  1 - c)) occurring in the evaluation is determined by assuming 
ci to be positive. This follows from the fact that the pertinent solution of the inviscid 
Orr-Sommorfeld equation for ci + 0 is that one for which cI tends to zero from the positive 
side. 

- w -  
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the ship's side the distribution of the velocity component parallel to V will be 
somewhat like that sketched in figure 5, the maximum velocity being of order V .  
The interaction of the ship's motion with the incoming waves may in various 
ways lead to the radiation of energy away from the ship. Here we focus attention 
on the interaction, in terms of the mechanism described in the foregoing sections, 
between the boundary layer alongside the ship and waves propagating in the 
direction of V .  Whereas in the foregoing sections long waves were discussed, we 

FIGURE 4. Ship advancing in wavy sea with velocity V.  Waves propagating in direction 
of V hava velocity c, < V.  The cross section A-A is in the boundary layer along the ship. 

FIGURE 5. Sketch of distribution of velocity component parallel to V as it will appear in 
the cross-section A-A of figure 4. A critical depth for which u" > 0 is indicated. 

have to  deal here with deep water waves. An estimate for the propagation speed 
of such waves on a non-uniform flow may be obtained as follows. At the surface 
U' = 0 when a light fluid, e.g. air, is above the surface. Therefore U' is small near 
the surface and then the approximate solution of (2.11) 

Q, = -a(U-c)eku (5.4) 

may be used, where for convenience the origin is shifted to the free surface. 
Solutions of this type have been used by Miles (1957) and Benjamin (1959). 
Equation (5.4) satisfies (2.6), vanishes for y + - co and is an approximate solution 
of (2.11) when either of the quantities U'/k(U--  c) and kU'/U" is small. On (5.4) 
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we impress the remaining surface condition (2.10) and obtain the dispersion 
relation 

Using this estimate of wave speed it follows that when V = 10m/s there is for 
waves with a wavelength between 0 and 60m a critical depth. 

At a number of these, in particular those associated with the shorter waves, 
0: is positive (figure 5). For infinite depth the wave-induced Reynolds stress 
vanishes at great depth and then it follows from (3.3) that there is above the 
critical depth a positive stress, which according to (3.6) and ( 3 . 6 ~ )  leads to an 
increase of the absolute value of the wave momentum. Hence there is a transfer 
of momentum and energy from the boundary layer to the waves, which manifests 
itself as an increase in wave resistance for the ship. The amount of transmitted 
energy depends on the magnitude of (U/U') l # l z  at the critical depth. 

For long water waves we could obtain the value for $ directly. For deep water, 
kh 3 1, the analysis must be extended. Since there are no bottom effects, use of 
the Rayleigh equation is justified, provided of course the necessary measures 
regarding the critical depth are taken. Without carrying out the analysis, which 
is more complicated than for long waves, it  is possible to give a lower and an 
upper bound for $,, the value of $ at the critical depth, for deep water. From 
integration of (2.11) we obtain with help of the free surface condition (2.10) 

(U, - c)2 = g/k. (5.5) 

(U-c)$ ' -$U'  = -ga+ (5.6) 

At the critical depth U = c, whence 

For the evaluation of the integral in (5.7) we use the approximation (5.4) for $. 
Although this is certainly not a good approximation for $ in the neighbourhood 
of the critical depth this introduces only a small error since the integrand is 
small anyway in the neighbourhood of the critical depth because of the 
factor U-c .  Inserting (5.4) in (5.7) yields 

In  the region between critical depth, y = yc, and free surface, y = 0, we have 

Introducing this in the above integral and taking (5.5) into account gives as 

9a $c > -ekuc. 

This shows that, other quantities being equal, the effect of the critical depth is 
in deep water smaller by a factor ekuc as compared with shallow water. For three- 
dimensional boundary layers as occurring along a ship no velocity profiles are 
known quantitatively. It seems reasonable to  assume that the region of appre- 
ciable curvature and gradient will occur at  a depth of order of the draft of the ship. 
Waves having an associated critical depth of this order of magnitude and a length 
exceeding the draft in magnitude, will contribute to the transfer of energy from 

0 < ( U - C ) 2  < (U,-C)2. 

a lower bound for 4, 

u; 
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the mean flow into the waves. In  this way interaction between the waves and the 
viscous boundary layer is produced. 

Joosen (1966) investigated the increase of wave resistance of a ship in waves 
on the basis of potential theory, taking no account of the boundary-layer effects. 
He compared his theory with experimental results and found that the agreement 
was good at  wavelengths of order of magnitude of the length of the ship (the 
wave fronts being normal to the ship’s course). 

A discrepancy appeared at  short wavelengths, because there the theoretically 
derived extra wave resistance tends to zero in contrast with experiments. Apart 
from the diffraction effect, mentioned by Joosen, the mechanism described here 
may contribute to the ‘added resistance’ of the ship in waves. 

A short version of this paper was presented by one of us (L.v. W.) at  the 
Twelfth International Congress of Applied Mechanics at  Stanford University, 
August 1 9 6 8. 

Appendix 
In  the paper the principal value integral 

appears. If one wants to evaluate the integral numerically for a given profile 
one will find the above form unsuitable, because the integrand is even around 
the point where U = c,. 

A form suitable for numerical calculation can be obtained in the following way. - -  
By partial integration 

The integral is now a Cauchy principal value, but both the first and the second 
term diverge at  y = 1, where U’ = 0. Therefore we write 

- -ay. 
1 and obtain I = -  

The integral is now convergent and a Cauchy principal value integral. 

REFERENCES 

BENJAMIN, T. B. 1959 J .  Fluid Mech. 6, 161. 
BETCHOV, R. & CRIMINALE, W. 0. 1967 Stability of Parallel Flows. New York: Academic. 
BURNS, J. C. 1953 Proc. Camb. Phil. SOC. 49, 695. 
JOOSEN, W. P. A. 1966 Proc. 6th Symposium on Naval Hydrodynamics. Ed. R. D. Cooper 

LAMB, H. 1932 Hydrodynamics, 6th ed. Cambridge University Press. 
LIN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
MILES, J. W. 1957 J .  Flu% Mech. 3, 185. 
MILES, J. W. 1960 J .  Fluid Mech. 8, 593. 

and S. W. Doroff, Washington D.C. 




